
DON’T USE THE M WORD

Tania Dastres and Marcus Ransom
RMIT University

Please leave comments on this talk at auc.edu.au/xworld/sessions
Hashtag : #xw14

Thanks to

Don’t use the M word

Tania Dastres
MacWorks Technical Lead

and
Marcus Ransom
Lead Apple Technician

Don’t use the M word
- RMIT University
- Old IT vs new IT. It’s ALL about the user
- How are we moving towards the new?
- What next?

RMIT University

• Founded in 1887
• Australia’s largest tertiary institution
• 82,000 students

RMIT University

• Campuses in Melbourne CBD, Bundoora and Brunswick
• 2 international campuses in Vietnam
• Research office in Barcelona

RMIT University

• Over 15,000 computers
• At least 2500 Mac OS X*

Using a Mac at RMIT
where we have come from

• Individual college based IT departments
• Mixed teams providing support across platforms
• Labs owned and maintained by colleges/schools
• Some knowledge sharing between colleges

Labs

• Nearly 1300 machines in over 60 Labs
• Monolithic images
• Individual customisation for different spaces
• Network logins
• Administration via ARD
• Moved to Munki and Deploy Studio in 2011

Staff Machines

• Over 1200 machines (exact numbers uncertain)
• Monolithic or no images
• No centralised management
• Local user accounts
• Mix of purchased and leased
• Poor asset tracking

2012

• Centralised ITS
• Client Computing

2013

• Advanced Technologies - Apple Team

Apple Team
• Third level support for Mac OS X and iOS
!

• Supporting Service Desk and Field Services with level 1 & 2 tasks
!

• Deployments outsourced
!

• Project support with experienced Apple technical knowledge
!

• Casper Suite used to manage 1200 lab machines in 2014

Why change?

What worked and what didn’t

• No management = minimal restrictions
• Excellent specialised and localised support
• Poor skill levels in some areas
• No way of automating updates to staff
• We had NO idea how many machines we had

Managed Operating Environment
that’s an M word right at the start isn’t it?

Don’t use the M word

Old IT

Old style Macintosh management

• Monolithic image - make any changes - do it all again
!

• Manage configuration and preferences, software updates
!

• Golden Triangle/Directory Services/MCX/network home directories
!

• Restricted access to admin privileges
!

• Goal of consistency

manage ALL the things

The perfect storm

The storm builds
• yearly OS Updates
• installESD
• iCloud integration
• deprecation of MCX
• configuration profiles
• move from MIT to Hemdahl Kerberos
• rewrite of dscl
• document autosave and versions
• iLife app adoption
• client OS Virtualisation
• internet recovery
• recovery HD

Can you see a pattern?

• Free Upgrade
• Mac App Store for standard users
• VPP and DEP
• iWork app adoption
• plist caching

What is going to change next??

• Apple ID for local password
• iCloud Drive
• OS X Beta Program
• watch this space

The New IT

It’s all about the User

“You’ve got to start with
the customer experience
and work back toward the
technology - not the other
way around”

We are all users

• How would we like our machines set up and administered?
!

• What would annoy us if someone imposed it on our machines?
!

• Users are just trying to do their job

Getting buy in from users

• Promote the augmented services
!

• Don’t focus on the restrictions
!

• Give them something they have been asking for
!

• Lead by example

New style IT management

• Design based on needs, not consistency with other platforms or historical
policies

• Embracing differences rather than enforcing consistency
• Educate other departments on the requirements of the Mac OS X platform
• Manage once, not always
• Thin provisioning, modular deployment & rapid adoption
• Self service

MacWorks

What is MacWorks?

Install & Update Software

OS Updates

User Initiated Maintenance & Troubleshoot

Mac Imaging

Patch Management

Asset Reporting

Remote Assistance

Knowledge Base

Upskill of ITS Support Teams

Core Configuration

Core Software/Applications

Seamless Printing

Wireless Device Authentication

Hardware Lifecycle Improvements

Software License Metering

Basic standard configuration

Staff machines are provided with only basic software installed.
Users can add anything else they require through self service
!
Microsoft Office
iLife + iWork
Google Chrome
Citrix Receiver
Casper Self Service
Fetch
VLC
!

!
!
Adobe Flash Player
Java Web Plugin
KeyAccess
Ricoh Drivers
McAfee
!
!

What configuration DO we perform?

Configurations that enhance rather than restrict
!
Global print queue
Preventing .ds_store
Local admin for tech support
Enabling click through at login
Basic network and local settings
!
!

!
!
Skip welcome screen in Safari
VNC to currently logged in user
Set Safari home page to RMIT
Disable iCloud setup prompt
Device wireless authentication
!
!

Transparency about restrictions
• Password protected screensaver timeout - 10 minute with 5 second grace
!

• Auto login disabled
!

• Enforced password policy - expiry, complexity and not recycled.
!

Active Directory

AD login on laptops posed several challenges
!
• External password resets
!

• Users seldom log off
!

• No password reminder at login window since 10.9 (or if FileVault is enabled)
!

• Introduction of Apple ID password reset
!

• Departmental shared drives

If we aren’t managing, what ARE we doing?

• Providing services
• Configurations that enhance rather than restrict
• Building a knowledge base
• Providing automated tech support
• Simplified network connectivity
• Self service delivery of software, updates and configuration
• Championing for services to become compatible
• Hidden control with visible customisation

Build communities

Deployment workflows - Staff

• Why image a machine if it comes with a perfectly good OS already?
!

• No more updating net boot images to suit new hardware / forked builds of OS
!

Workflow
!
• Deployment tech boots to recovery HD and runs a script.
!

• Tech runs some setup policies in self service
!

• User installs remaining software
!
!

Deployment workflows - Staff

Boot to recovery partition and run the following command in terminal

/Volumes/Casper/bootstrap.sh

!
Contents of Bootstrap.sh script run from USB
#!/bin/sh

Install Bootstrap package to Macintosh HD

/usr/sbin/installer -package "${0%/*}/Bootstrap.pkg" -target "/Volumes/Macintosh HD"

/usr/bin/touch "/Volumes/Macintosh HD/private/var/db/.AppleSetupDone"

Restart

/sbin/reboot

!

Deployment workflows - Staff
Quickadd.plist

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>au.edu.rmit.quickadd</string>
 <key>LimitLoadToSessionType</key>
 <string>LoginWindow</string>
 <key>Program</key>
 <string>/Library/PrivilegedHelperTools/au.edu.rmit.quickadd.sh</string>
 <key>RunAtLoad</key>
 <true/>
</dict>
</plist>

!
!

Deployment workflows - Staff
Quickadd script run from launchd
#!/bin/sh
Get serial number
SERIAL_NUMBER=$(/usr/sbin/system_profiler SPHardwareDataType | /usr/bin/awk
'/Serial Number \(system\)/ { print $4 }')
Set computer name
/usr/sbin/scutil --set ComputerName "$SERIAL_NUMBER"
Install QuickAdd-Transition package
/usr/sbin/installer -package "/Library/PrivilegedHelperTools/QuickAdd-Transition.pkg" -target /
until [$? -eq 0]; do
 /bin/sleep 30
 /usr/sbin/installer -package "/Library/PrivilegedHelperTools/QuickAdd-Transition.pkg" -target /
done
/bin/launchctl load -F -S LoginWindow "/Library/LaunchAgents/au.edu.rmit.bootstrap.plist"
Cleanup
/bin/rm -r "/Library/PrivilegedHelperTools/QuickAdd-Transition.pkg"
/bin/rm "/Library/LaunchAgents/au.edu.rmit.quickadd.plist"
/bin/rm "$0"

Deployment workflows - Staff

Bootstrap.plist
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>au.edu.rmit.bootstrap</string>
 <key>Disabled</key>
 <true/>
 <key>LimitLoadToSessionType</key>
 <string>LoginWindow</string>
 <key>Program</key>
 <string>/Library/PrivilegedHelperTools/au.edu.rmit.bootstrap.sh</string>
 <key>RunAtLoad</key>
 <true/>
</dict>
</plist> !

Deployment workflows - Staff

Bootstrap policy trigger run from launchd:
#!/bin/sh
until [-f /private/var/db/dslocal/nodes/Default/users/taa.plist]; do
 /usr/sbin/jamf policy -trigger Bootstrap
 [! -f /private/var/db/dslocal/nodes/Default/users/taa.plist] && /bin/sleep 30
done
Cleanup
/bin/rm "/Library/LaunchAgents/au.edu.rmit.bootstrap.plist"
/bin/rm "$0" !!!!

Self Service

How are we trying to do
this at RMIT?

Work smarter with the tools that we have at our disposal.
!
Build the kind of tools that users are going to want to use.
!
Improve the tools you create willingly and often.
!

Scripts are easy to develop and easy to deploy.
!
But how can we also make them user-friendly?
!

There are tools available that give your script a GUI as well as facilitate
script-user interaction.

Platypus

!

You don't need to be an expert developer or coder to use them!

CocoaDialog

Pashua

When our users contact IT Service Desk they are usually asked a series
of questions about their Mac.
!
To gather this information for the Mac can be time consuming and
frustrating for both the customer and the IT support person.

How to create a script that displays a summary of this
information in one easy to find place.

1. Retrieve information

system_profiler SPHardwareDataType
sw_vers -productVersion
networksetup -listallnetworkservices
!
2. Make a clickable app

Platypus
Platypus puts your script in an application bundle and creates the binary to execute it.

!
There are six output display options:

• None

• Progress Bar

• Text Window

• Status Menu

• Droplet

• Web View

http://web.mit.edu/cron/system/macathena/core/scripts/support/Platypus-4.8/Platypus.app/Contents/Resources/PlatypusDocumentation.html

Secure Bundled Script:

Without a Secure Bundled Script:

The result:

Mac Support Summary

Output Type: Status Menu

Output Type: Droplet

Platypus can let you do some other cool things

Eg. A script that displays your Mac IP address.

Eg. A script that creates a payloadless package.

Problem

How to provide the benefits of AD without the user needing to
log in to an AD-bound account?

Option #1: Pashua

Multiple GUI elements displayed in the one window !
Separate display configuration file !
Limited text formatting options (use “[return]” for a line break) !
Pashua dock item appears by default !
Some of Pashua’s 15 available GUI elements:
 Buttons
 Checkboxes
 Images
 Popup list… !

For the full list - http://www.bluem.net/en/mac/pashua/

http://www.bluem.net/en/mac/pashua/

Pashua - the basics
#!/bin/bash
BUNDLEPATH="Pashua.app/Contents/MacOS/Pashua"
PASHUAPATH="/usr/local/$BUNDLEPATH"
FIRST_CONF="first_conf"

pashua_run() { !
In this case, $1 is first_conf
pashua_configfile="$1" !
Pashua does its magic, and returns the
resulting user input as one long string. !
result=`"$PASHUAPATH" $pashua_configfile
| sed 's/ /;;;/g'` !
pashua_run then parses this result
into variables with the same names as
the element name in the conf file
}
User clicked the default OK button
if [[$db -eq 1]]
then !
AD username
check_eNumber "$enumber"
fi

Option #2: CocoaDialog

Lets your script display one dialog type after the other.

Fourteen dialog types to choose from

Icons can added to some dialog types only.

 And they must be in .icns format.

 And they can’t be resized or moved around.

Text cannot include a line break.

Dialog type includes a progress bar

and bubbles.

CocoaDialog - the basics !
CD_APP="/usr/local/CocoaDialog.app"
CD="$CD_APP/Contents/MacOS/CocoaDialog"

e_number_input=`$CD inputbox --title "RMIT Network Connector" \\
 --informative-text "Enter your RMIT ID" \\
 --text "e-number" \\
 --button1 Select \\
 --button2 Cancel`;
User input gets submitted as a string so you need to extract out the values you want
declare -a input=($e_number_input);
button=${input[0]};
eNumber=${input[1]}; !
User clicked button 1, the OK button
if [$button -eq 1]
then
So now ask them for their password
password_input=`$CD secure-inputbox \\
 --title "RMIT Network Connector" \\
 --informative-text "RMIT ID Password" \\
 --button1 OK \\
 --button2 Cancel`;
fi !!!

RMIT Network Connector. So what does it do?
1. Confirm that the Mac is on an RMIT network.
checkDatasource=`dscl /Active\ Directory/<Domain> -read Users/$1 | grep "Data source (/Active
Directory/<Domain>) is not valid"`

2. Get the mount folders ready
if [[! -d ~/mount]]
then
 mkdir ~/mount
 mkdir ~/mount/H
 mkdir ~/mount/K
fi

3. Make sure that the dock item Network Drives is there. If it's not, create it!
dock_item_exists=$(echo "$persistent_dock_items" | grep "file-label = Network Drives")
if [[-z "$dock_item_exists"]]
then
defaults write com.apple.dock persistent-others -array-add "<dict><key>tile-data</key><dict><key>file-
data</key><dict><key>_CFURLString</key><string>/Users/$USER/mount</string><key>_CFURLStringType</
key><integer>0</integer></dict><key>file-label</key><string>Network Drives</string><key>file-type</
key><integer>18</integer></dict><key>tile-type</key><string>directory-tile</string></dict>"
killall Dock
fi

4. Use CocoaDialog to ask the user for their AD username and password.

 # 5. Confirm that their username is a valid AD user.
 error_check=$(dscl /Active\ Directory/<Domain> -read Users/$eNumber 2>&1 > /dev/null)

6. Generate the Kerberos ticket
kinit_result="$(echo "$password" | kinit --password-file="STDIN" "$eNumber"@<Domain> 2>&1 > /dev/null)"

7. Do an LDAP query to get the user's H drive address
home_dir=$(ldapsearch -LLL -x -H ldap://<Domain> -D "RMIT\\$eNumber" -b
"ou=Accounts,dc=rmit,dc=internal" -w $password cn="$eNumber" | grep "homeDirectory" | sed 's/
homeDirectory: /''/g')

 # 8. Unmount the drives in case they're already mounted
 diskutil umount ~/mount/H 2>&1
 diskutil umount ~/mount/K 2>&1 !
 # 9. And mount the user's H and K drive
 mount_smbfs "$home_dir" ~/mount/H
 mount_smbfs //<K drive address> ~/mount/K

10. Finally, call the function that displays a completion message
completionMessage "Complete! Your H ($eNumber) and K (University) drives are now available from the
Network Drives folder on your dock."

Generate a completion message for the user - in this case, using CocoaDialog
function completionMessage()
{
message=`$CD msgbox --icon network --text "RMIT Network Connector" \
--informative-text "$1" \
--no-newline \
--button1 "OK"`
}

Problem

How to we record RMIT specific information in the JSS?

Mac ID Setup, in four easy steps.
!
1. Retrieve information!!
2. JSS API to write this information to the JSS Computer object.!!
curl -X PUT -H "Accept: application/xml" -H "Content-type: application/xml" -k -u
"$API_USER":"$API_PW" -d "<computer><purchasing><purchasing_account>
$cc_confirmed</purchasing_account></purchasing></computer>" "${jssServer}/
JSSResource/computers/udid/$udid" !

User and Location: Username
If the usage type is Staff Mac the e number is requested

User and Location: Department
Cost Centre Code has corresponding Department name in csv
file script searches through.
that gets searched for in cc.csv file to look for a corresponding
Department string, which gets written to
User and Location: Department.

General:Asset Tag

User and Location: Room

Hidden file

4. Progress bar

5. Completion message.

Mac ID Setup

Display the MacWorks logo
img.type = image
img.path = /tmp/macworks.gif
img.border = 0

Problem

How do we keep RMIT specific information up to date in the
JSS?

Solution: Update Location Details, in five easy steps

1. JSS API
locationXML=$(curl -s -u "$API_USER":"$API_PW" “${jssServer}/JSSResource/computers/udid/$udid/subset/
Location”)
username=$(echo "$locationXML" | xpath /computer/location/username | sed -e 's/<username>//;s/<\/
username>//')
location=$(echo "$locationXML" | xpath /computer/location/room | sed -e 's/<room>//;s/<\/room>//') !
2. Create a temporary Pashua configuration file!
settings_page=$(mktemp /tmp/settings_conf_XXXXXX)
chmod 755 "$settings_page" !
...to display the retrieved values as text !!
echo "username.type = text" >> "$settings_page"
echo "username.label = Username: " >> "$settings_page"
echo "username.text = $username" >> "$settings_page" !
But display the location information (room) as a textfield element!!
echo "location.type = textfield" >> "$settings_page"
echo "location.label = Location (bxxx.yy.zzz):" >> "$settings_page"
echo "location.default = $location" >> "$settings_page" !

4. Progress bar
$CD progressbar --indeterminate --title "Updating Location" --text "Please wait..." < /tmp/hpipe &

5. Write the new location/room information back to the JSS
curl -X PUT -H "Accept: application/xml" -H "Content-type: application/xml" -k -u
"$API_USER":"$API_PW" -d "<computer><location><room>$location</room></location></computer>" "${jssServer}/
JSSResource/computers/udid/$udid" !
6. Completion message.

!
Links to checkout
!
Platypus
http://sveinbjorn.org/platypus
!
Pashua
http://www.bluem.net/en/mac/pashua/
!
CocoaDialog
http://mstratman.github.io/cocoadialog/

http://sveinbjorn.org/platypus
http://www.bluem.net/en/mac/pashua/
http://mstratman.github.io/cocoadialog/

What Next?

What Next?
Improve our custom tools
!
Add new tools for
- enterprise file vault
- repairs to AD binding and device wireless auth.
- autorun of RMIT Network Connector
- Mac Support Summary auto submits ticket and console logs
- develop a banner showing that their RMIT or local password is about to expire
- provide scoped policies to install specialist printers
- reset local account passwords via self service (with complexity guide)
- leverage the API to deal with individual software license keys (eg VMware Fusion)
- use the API to provide live information to users about software in specific labs
!

!

embrace the community

• AUC
• Illuminate.mx
• Sydney MacAdmins
• MacBrained.org
!

• MacEnterprise
• JamfNation
• IRC ##osx-server
• Twitter #macadmin
!
!

Create the community

• RMIT is hosting /dev/world/ in September this year in partnership with AUC
!

• January 2015?

Questions?

tania.dastres@rmit.edu.au
marcus.ransom@rmit.edu.au
twitter #xw14

mailto:tania.dastres@rmit.edu.au
mailto:marcus.ransom@rmit.edu.au

Thank you

